On Implicit Approximation of the Bellman Equation ?
نویسنده
چکیده
In this article, an efficient algorithm for an optimal decision strategy approximation is introduced. It approximates the Bellman equation without omitting the principal uncertainty stemming from incomplete knowledge. Thus, the approximated optimal strategy retains the ability to constantly verify the current knowledge. An integral part of the proposed solution is a reduction in memory demands using HDMR approximation. The result of this method is a linear algebraic system for an approximated upper bound on the Bellman function. The analysis of the approximation error has not been considered here. One illustrative example has been completely resolved.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملError estimates for finite difference-quadrature schemes for a class of nonlocal Bellman equations with variable diffusion
We derive error estimates for certain approximate solutions of Bellman equations associated to a class of controlled jump-diffusion (Lévy) processes. These Bellman equations are fully nonlinear degenerate integroPDEs interpreted in the sense of viscosity solutions. The approximate solutions are generated by an implicit finite difference-quadrature scheme.
متن کاملA Transformation Method for Solving the Hamilton{--}jacobi{--}bellman Equation for a Constrained Dynamic Stochastic Optimal Allocation Problem
We propose and analyse a method based on the Riccati transformation for solving the evolutionary Hamilton–Jacobi–Bellman equation arising from the dynamic stochastic optimal allocation problem. We show how the fully nonlinear Hamilton–Jacobi– Bellman equation can be transformed into a quasilinear parabolic equation whose diffusion function is obtained as the value function of a certain parametr...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کامل